Introduction to Integrated Chiller Retrofits

Helen Kessler
Executive Vice President
Sieben Energy Associates
Chicago, Illinois

Why an Integrated Chiller Retrofit?

- Turn the necessity of coping with CFC phaseouts into an opportunity for
 - Energy & Cost Savings
 - More Efficient Building Operations
 - Improved Environmental Sustainability
 - Increased Comfort and Productivity
 - Increased Asset Value

What is an Integrated Chiller Retrofit?

Combines

- building system and load improvements/retrofits
- chiller replacement or retrofit for CFC conversion
- Systems approach for comprehensive building analysis
 - solves building problems
 - saves energy and money
 - finances chiller replacement with other measures
 - deals with CFC issues
 - avoids lost opportunities

Steps to an Integrated Approach

- Find operations & maintenance opportunities
- Look for building load reductions
- Use low or no-energy HVAC systems
- Introduce high-efficiency equipment
- Improve control systems
- Properly commission the systems

Operation & Maintenance Opportunities

- Audit to find efficiency opportunities
 - Check equipment condition and function
 - Evaluate operating schedules
 - Evaluate temperature setpoints
 - Evaluate problems
- Typical energy savings due to O&M improvements is 10% or more

Reduce Building Loads

- Building envelope
 - insulation, glazing, outside surface reflectivities
- Lighting loads
 - high efficiency lighting, daylighting, controls
- Plug loads
 - appliances and their use schedules
- Watch out for load assumptions
 - measure, don't assume!

Low or No-Energy HVAC Systems

- Cooling with economizers
- Direct and indirect evaporative cooling
- Heat recovery
- Natural ventilation
- Thermal Storage

High Efficiency HVAC Equipment

- Energy-efficient equipment
 - Variable Speed Drives
 - Coils
 - Motors
 - Low kW/ton chillers
- Avoid oversizing
 - saves initial and lifetime costs

Improve Control Systems

- Must be properly commissioned and used
- Get training over an extended time period
- Get manuals specific to your system
- Periodically re-evaluate use of control systems

Commission the Systems

- Save time, energy, aggravation, and even litigation over the building lifetime
 - Pre-functional testing
 - Functional testing of systems
 - Training, manuals
 - Re-commission older systems if needed

Chicago Office Building Example Project Context

- CFC refrigerants in existing chillers
- Desire to reduce utility bills
- Comfort complaints, "not enough air"
- Perceived need to purchase new 200 ton chiller

Chicago Office Building Example Project Steps

- Audit
- Implementation
 - low and no-cost measures implemented first
- Results
 - Operational
 - Financial
 - Non-financial

Chicago Office Building Example Building Load and System Improvements

Integrated Options	Estimated Initial Cost (\$)	Estimated Annual Energy Savings (\$)	Simple Payback (years)
Lighting Retrofits	\$400,000	\$137,000	2.9
Air Handling System Recommissioning	\$71,000	\$140,000	0.5
Central Cooling System Improvements	\$4000	\$10,000	2.5
Total	\$475,000	\$287,000	1.7

Even without chiller replacement

- Air supply problems resolved
- Reduced chiller operation
- Hot and cold complaints minimized

Chicago Office Building Example Chiller Options

Chiller Options	Estimated Initial Cost (\$)	Estimated Annual Energy Savings (\$)	Simple Payback (years)	Payback w/ Improvements (years)
Add Supplemental 200 ton Chiller	\$200,000		8	
Retrofit Existing Chillers for CFC Compliance	\$100,000*		∞	
Retrofit and Downsize Existing Chillers	\$100,000*	\$20,000*	5.0	1.9
Replace Existing Chillers for CFC Compliance	\$450,000*	\$25,000*	18.0	
Replace and Downsize Existing Chillers	\$400,000*	\$30,000*	13.3	2.9

- T "Back-of-the-envelope" estimates
- Integrated load and system improvements reduce payback periods

Chicago Office Building Example Future Opportunities

- No supplemental chiller needed
 - Avoided costs of \$200,000 by making building load and system improvements
- Potential to reduce chiller capacity in combination with building retrofits
- Replacement and/or retrofit of chiller for CFC compliance

Results of the Integrated Approach

- Saved energy and money from building system and load improvements
- Smaller chiller needed
- New, more efficient chillers add to savings
- Chiller work can be financed by measures with shorter payback periods
- Building operation and maintenance improved
- Building comfort and asset value enhanced